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ProblemProblemProblemProblem StatementStatementStatementStatement
The purpose of this project is to find the transfer fucntion H(s) of an equal-ripple passband/general purpose

stopband lowpass filter. The requirement for the passband attenuation between DC and 1MHz is 0.1dB. The piece-wise
constant stopband requirements are over 65dB between 2.13MHz and 3MHz and over 40dB above 3MHz. From these
requirements the project seeks to find the optimum location of transmission zeros (loss poles), so that the margins (Di)
between the actual and specified stopband loss responses is the largest possible.

TechnologyTechnologyTechnologyTechnology OverviewOverviewOverviewOverview
One of the leading software packages in filter design is the Fitler Design and Analysis Tool, or fdatool, found in

MATLAB. This tool is used to quickly design very basic filters. However, given the non-standard requirements of this
project, the fdatool in MATLAB will not be sufficient.

The pole-placer algorithm is a great alternative to the fdatool. This algorithm, which is a tool bar add on created at
Linkӧping University [1], is based on the work of B.R. Smith and G.C Temes [2]. The algorithm uses transformed variables,
which separates the filter passband and stopband by mapping different parts of the -axis in the s-plane to the real- and
imaginary axis in the Zplane.
The relation between the Z-plane and the s-plane is

Eqn.1Eqn.1Eqn.1Eqn.1 :::: TheTheTheThe RelationshipRelationshipRelationshipRelationship betweenbetweenbetweenbetween thethethethe Z-Z-Z-Z- andandandand S-planeS-planeS-planeS-plane

where ωA and ωB are the lower and upper limits of the passband. The algorithm maps transformed variables, such as
clustered zeros, further apart. This is particularly valuable because poles in the passband tend to cluster close to the
transition region. Compared to the standard MATLAB library (the Signal Processing Toolbox) which uses rational
functions in polynomial form, the transformation used by the Pole-Place algorithm enables simpler computational methods
and therefore the synthesis of higher order designs.

Another important aspect of this algorithm is that it sets transmission zeros based upon an initial placement input
and iterates their position until the margins are all as large as possible. As illustrated in Fig.1, this happens when D1 and
D2 margin is as close in value to each other as possible.



Fig.1:Fig.1:Fig.1:Fig.1: MarginMarginMarginMargin MeasurementMeasurementMeasurementMeasurement

For this project, the “POLE_PLACE_LP_EQ_S” algorithm was used based on the given specifications. This
algorithm inputs the commanded frequencies and loss requirements and returns the zeros, poles and scaling constant for a
lowpass filter with equiripple passband.

DesignDesignDesignDesign ResultsResultsResultsResults
Applying this algorithm to the design of an equal-ripple/general purpose stopband lowpass filter, then, there are

four margins of interest, D1 through D4, which are illustrated in Fig. 2.

Fig.Fig.Fig.Fig. 2:2:2:2: TheTheTheThe FourFourFourFour MarginsMarginsMarginsMargins

The design specification calls for the transmission zeros to be placed such that the margin between the actual and
specified stopband loss is the largest possible. The design goal therefore is to make D1, D2, D3, and D4 equal, or close
enough to equal so that they are all as large as possible.



ResultsResultsResultsResults

The inputs to the pole-placer algorithm are as follows:

While the passband ripple requirement was 0.1 dB, it was found that if Amax was set to 0.1, the actual ripple was higher
than the requirement. Thus, Amax was reduced to 0.085dB.

Given the inputs above, the pole placer algorithm was then utilized to find the optimal poles, zeros and the gain of
the transfer function, which are given below. Also, Fig. 4 shows a plot of the poles and zeros of the transfer function on the
real and imaginary axis

TheTheTheThe PolesPolesPolesPoles ofofofof thethethethe TransferTransferTransferTransfer functionfunctionfunctionfunction

TheTheTheThe ZerosZerosZerosZeros ofofofof thethethethe TransferTransferTransferTransfer FunctionFunctionFunctionFunction



TheTheTheThe GainGainGainGain ofofofof thethethethe TransferTransferTransferTransfer FunctionFunctionFunctionFunction

Thus,Thus,Thus,Thus, thethethethe TransferTransferTransferTransfer FunctionFunctionFunctionFunction is:is:is:is:

Fig.4:Fig.4:Fig.4:Fig.4: Pole/ZeroPole/ZeroPole/ZeroPole/Zero PlotPlotPlotPlot

From this result, the attenuation can be plotted as a function of frequency and can be seen in Fig. 5. Also, Fig. 6
shows a close up of the ripple in the passband from DC to 1MHz. From this attenuation plot, the four margins of interest are
found and displayed after Fig. 6. It can be observed that D1, D2 and D3 are all equally maximized, while D4 is much
greater than the other three. Therefore, the optimal filter has been created for this project. The MATLAB code for this
project can be seen in the appendix section after the references



section.

Fig.Fig.Fig.Fig. 5:5:5:5: AttenuationAttenuationAttenuationAttenuation plotplotplotplot ofofofof thethethethe TransferTransferTransferTransfer FunctionFunctionFunctionFunction

Fig.6:Fig.6:Fig.6:Fig.6: PassbandPassbandPassbandPassband RippleRippleRippleRipple PlotPlotPlotPlot

ResultResultResultResult ofofofof thethethethe fourfourfourfour MarginsMarginsMarginsMargins



VerificationVerificationVerificationVerification ofofofof AlgorithmAlgorithmAlgorithmAlgorithm
To verify that the pole placer algorithm actually produced the optimal filter given the break frequencies, a sweep of

the upper bound (fupper) and lower bound (flower) of the break frequencies (fstep=[flower fupper]) were carried out using
MATLAB. The lower bound frequency was varied from 2MHz to 2.2MHz and the upper bound frequency was varied
from 2.7MHz to 3.3MHz. Both were incremented by 10kHz steps. Fig. 7 shows the comparison of the optimal break
frequencies (fstep=[2.13MHz 3MHz]) in green to that of the lower bound break frequencies (fstep=[2.0MHz 2.7MHz]) in
blue. Notice how d1 and d2 are significantly larger than d3. This shows that not all margins are optimized.

Fig.Fig.Fig.Fig. 7:7:7:7: ComparativeComparativeComparativeComparative plotplotplotplot ofofofof thethethethe optimaloptimaloptimaloptimal breakbreakbreakbreak frequenciesfrequenciesfrequenciesfrequencies inininin greengreengreengreen (fstep=[2.13MHz(fstep=[2.13MHz(fstep=[2.13MHz(fstep=[2.13MHz 3MHz])3MHz])3MHz])3MHz]) andandandand lowerlowerlowerlower breakbreakbreakbreak
frequenciesfrequenciesfrequenciesfrequencies inininin blueblueblueblue (fstep=[2.0MHz(fstep=[2.0MHz(fstep=[2.0MHz(fstep=[2.0MHz 2.7MHz]).2.7MHz]).2.7MHz]).2.7MHz]).

The same can be said for break frequencies that are higher than the optimal. Fig. 8 shows the comparison of the
optimal break frequencies shown in green to that of the higher bound frequencies (fstep=[2.2MHz 3.3MHz]). From this
graph, d3 and d2 are now significantly greater than d1. Again, the margins are not optimized. These two graphs prove that
break frequencies at 2.13MHz and 3MHz do in fact produce the optimal filter.



Fig.Fig.Fig.Fig. 8:8:8:8: ComparativeComparativeComparativeComparative plotplotplotplot ofofofof thethethethe optimaloptimaloptimaloptimal breakbreakbreakbreak frequenciesfrequenciesfrequenciesfrequencies inininin greengreengreengreen (fstep=[2.13MHz(fstep=[2.13MHz(fstep=[2.13MHz(fstep=[2.13MHz 3MHz])3MHz])3MHz])3MHz]) andandandand higherhigherhigherhigher breakbreakbreakbreak
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